Roll No.

Total No. of Pages: 03

Total No. of Questions: 18

B.Tech. (EE/Electrical & Electronics Engg.) (2018 Batch)
B.Tech. (Electronics & Electrical Engg.) (2018 Batch) (Sem.-3)

ENGINEERING MECHANICS

Subject Code: BTXX-XXX-18 M.Code: 76385

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly:

- 1. Explain Eular's law?
- 2. Explain Scalar quantities.
- 3. What are rigid bodies? Explain.
- 4. Define a Free Body Dogram. Give two examples.
- 5. A body of mas (3) kg is moving with a velocity of 1.2 m/s. If a force of 15 N is applied on the body, determine its velocity after 2 s.
- 6. What do you understand by D'Alembert's principle?
- 7. Explain:
 - a. Coefficient of friction
 - b. Cone of friction.
- 8. Explain parallel and perpendicular axis theorem.
- 9. Define gyroscope.
- 10. Explain law of coulomb friction.

1 M-76385 (S2)-**761**

SECTION-B

- 11. Explain Symmetric and anti-symmetric tensor.
- 12. In the engine system shown in Fig.1, the crank AB has a constant clockwise angular velocity of 2000 rpm. For the crank position indicated, determine
 - a. Angular velocity of the connecting rod BD
 - b. The velocity of piston P.

FIG.1

- 13. A uniform ladder of weight 800 N and of length 7 m rests on a horizontal ground and leans against a smooth vertical wall. The angle made by the ladder with the horizontal is 60°. When a man of weight 600 N stands on the ladder at a distance 4 m from the top of the ladder, the ladder is at the point of sliding? Determine the coefficient of friction between the ladder and the floor.
- 14. Find the radius of gyrmion of a triangle whose base is 40mm and height is 60mm about an axis passing through C.G. and parallel to base (Fig.2).

FIG.2

2 | M-76385 (S2)- **761**

15. A dynamics instructor demonstrates gyroscopic principles to his students. He suspends a rapidly spinning wheel with a string attached to one end of its horizontal axle. Describe the precession motion of the wheel.

SECTION-C

- 16. a. Distinguish kinematics & kinetics.
 - b. Drive expression of the angular momentum of a system of point.
- 17. A beam ABCDEF of 7.5 m long and span 4.5 m is supported at B and E. The beam is loaded as shown in Fig.3. Find the support reactions at the two supports.

FIG.3

18. A solid steel shaft transmits 200 kW at 300 rpm. Determine the suitable diameter of the shaft if the maximum torque transmitted exceeds the mean 15% in each revolution. The shear stress is not to exceed 60 MPa. Also find the maximum angle of twist in a length of 4 m of the shaft. G = 80 GPa.

3 | M-76385 (S2)- 761